2022 Chicago National Conference

July 21-23, 2022

Grade Level


Topics




























Strands









Session Type












Pathway/Course

FILTERS APPLIED:6 - 8, Hands-On Workshop, Computer Science

 

Rooms and times subject to change.
5 results
Save up to 50 sessions in your agenda.

Using tools to sense and interact with the environment

Thursday, July 21 • 8:20 AM - 9:20 AM

McCormick Place - W193a



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Using tools to sense and interact with the environment.pdf

STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

After learning about computational thinking, participants will apply the framework to determine where students engage in computational thinking within the activity. Participants will engage in activities where students engineer as part of the investigations. Participants will be able to use a pre-programmed microcontroller (loaned by the presenters) to experience 3 different short investigations each tied to a different phenomenon. 1) Does angle matter? How does the angle of the collector affect how warm it is? Using the microcontroller and lamps participants will collect data to build a model that explains why the tilt of the Earth creates different seasons. 2) Transparent, Translucent, and Opaque. When working in a greenhouse, different materials can be used to cover the greenhouse. Which is the best material for your area? Using the light level sensor on the microcontroller, participants test different materials to recommend their uses when designing a greenhouse. 3) Making an alarm - using the microcontroller accelerometer sensor, participants arm an alarm and see how the accelerometer works in three dimensions. Participants will be provided printed copies of the lesson plans and how to engage students with using the microcontrollers. Note that no knowledge of coding or any equipment brought is necessary to participate in this workshop.

TAKEAWAYS:
Attendees will learn (1) Microcontrollers are small computers that come with several integrated sensors. Their functionality makes them useful for both investigations and engineering projects. Some of the basic functionality of different microcontrollers (2) One definition of computation thinking is how to use computers to solve problems. Computational thinking activities that connect students to everyday phenomena. The development of algorithms or the decomposition of problems into simple steps are just two examples of processes associated with computation thinking. It is a powerful problem-solving technique that is used in the modern world (3) How engineering tasks provide opportunities for student sensemaking

SPEAKERS:
Susan German (Hallsville Middle School: Hallsville, MO), G. Michael Bowen (Mount Saint Vincent University: Halifax, NS)

Dog Mode Design Challenge

Thursday, July 21 • 8:20 AM - 9:20 AM

McCormick Place - W185a



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Dog Mode Slide Deck

STRAND: No Strand

Show Details

Introducing students to real-world engineering problems is a key component to engaging them in the science classroom. In this project, students solve the problem of saving pets from a hot car. Many students are aware of this issue and would have many ideas on how this could be achieved. This projects gives them the tools to help solve such a problem by building a model and finding a solution. Participants in this session will get to build the model themselves to see how information from sensors (input) can determine what should be done (output) through simple lines of code. No coding or engineering experience is needed, just imagination and logical thinking. Projects like these can expose students to STEM Careers. The exposure to coding and engineering design can also get them interested in doing more in the STEM field.

TAKEAWAYS:
Solve a real-work problem with coding and engineering design - no prior experience needed.

SPEAKERS:
Jessica Kohout (Educational Consultant: Ellicott City, MD), Stacy Thibodeaux (Southside High School: Youngsville, LA)

Engineering Severe Weather Solutions

Thursday, July 21 • 9:40 AM - 10:40 AM

McCormick Place - W176c



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Sever Weather Slide Deck

STRAND: No Strand

Show Details

Human activities have caused changes in global temperature and weather patterns. This generation of students will need to understand climate science in order to adapt to this changing environment. In this session, participants will explore a project in which students incorporate engineering and basic coding - no experience necessary. We will use micro:bit technology to connect basic coding commands to collect authentic data using embedded sensors. Participants will use this collected data to modify design solutions based on human vulnerabilities to severe weather. Participants will find ways to expose their students to the engineering capabilities needed to solve problems. This project allows students to compare design solutions to identify which is best for the problem at hand and experience the interactive process of evaluating solutions. This project allows for the authentic integration of technology, mathematics, crosscutting concepts, science practices, and easy implementation of the Next Generation Science Standards.

TAKEAWAYS:
Use technology to expose students to coding and engineering design solutions for severe weather.

SPEAKERS:
Jessica Kohout (Educational Consultant: Ellicott City, MD), Stacy Thibodeaux (Southside High School: Youngsville, LA)

Broaden Science Participation: Unpack “Analyze & Interpret” to Teach Data As an Equalizer

Thursday, July 21 • 9:40 AM - 10:40 AM

McCormick Place - W179b



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Access to Resource Document
Complete this Google Form to access the Resource Document and a slide deck from the workshop.

STRAND: Learn and Lead: Developing a Community for Expanded Participation in Science and STEM

Show Details

We live in a data-driven world, and our students will be working in a data-driven workforce. Therefore, it is critical that our Pre-K-12 students learn foundational data literacy skills. However, currently these skills are too often only taught in upper-level classes. All students need these skills and all students, down to our little Pre-Kers, can work with and make sense of science data. Let’s make sure data is an equalizer, rather than another divider in our educational system and society! Join us as we explore what perception and learning science tell us about how our brains process data. We will experience research-based strategies and freely available resources to build science knowledge and self-efficacy through data. Finally, we will explore ways to adapt our existing curriculum activities and data visualizations to help our students more equitably access science. Through hands-on activities and group discussions, participants will leave more empowered to leverage data and data visualizations into their science content in purposeful ways for all learners. Working with and learning science from data fosters critical thinking skills, lifelong interests in science, and facilitates learners’ overall 21st century skills. Let’s set all of our students up for success!

TAKEAWAYS:
Participants will identify how data literacy is a critical aspect of science literacy in the 21st century for all students and ways to adjust existing curriculum to leverage data as entry points into science inquiry, sensemaking, and knowledge for all learners to see themselves in STEM.

SPEAKERS:
Kristin Hunter-Thomson (Dataspire Education & Evaluation, LLC)

Programming Simple Tools to Facilitate Science Inquiry Investigations

Saturday, July 23 • 1:00 PM - 2:00 PM

McCormick Place - W184d



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Programming Simple Tools to Facilitate Science Inquiry Investigations.pdf

STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

Participants will learn about the framework for computational thinking and then learn to apply it to science inquiry investigations using Block Coding (used with students in elementary and middle school in many jurisdictions) and how it can be used to improve the conduct of science investigations (and be more like the investigations conducted by scientists).   Participants will apply the computational thinking framework to creating/modifying/using simple programs (either using a free online programming tool OR with a simple, inexpensive microcontroller that will be loaned by the presenters) that can be used in science inquiry investigations either for conducting the investigation (e.g., a random number generator) or for collecting data (e.g., a counter and a timer). Investigations where these can be used will be discussed and demonstrated. The use of the microcontrollers and/or a free online programming tool to develop a simple measurement tool provides participants (and their students) an opportunity to experience a simulated situation a scientist or engineer would face as they use computing tools to develop automated measuring responses.   Finally, as an example of what is known as “physical computing”, participants will learn to build (and will build if time allows) a physical interface (to use with a computer or Chromebook) that allows them to interact with a program they have either written or downloaded.   Participants will be provided printed copies of example lesson plans and instruction sheets on how to engage students with using the Scratch program and the microcontrollers). Note that no knowledge of coding or any equipment is necessary to participate in this workshop. 

TAKEAWAYS:
Attendees will learn how computational thinking (applied to simple block coding examples and simple micro-controllers) can be used in science classrooms to help students conduct better inquiry investigations and better experience “authentic” science practices.

SPEAKERS:
G. Michael Bowen (Mount Saint Vincent University: Halifax, NS), Susan German (Hallsville Middle School: Hallsville, MO)

Back to Top