2022 Chicago National Conference

July 21-23, 2022

All sessions added to My Agenda prior to this notice have been exported to the mobile app and will be visible in your account when the app launches. Any sessions added now, will also have to be added in the app.
Grade Level


Topics




























Strands









Session Type












Pathway/Course

FILTERS APPLIED:6 - 8, Hands-On Workshop, Using Inquiry-Based STEM to Facilitate Learning for ALL

 

Rooms and times subject to change.
8 results
Save up to 50 sessions in your agenda.

Using tools to sense and interact with the environment

Thursday, July 21 • 8:20 AM - 9:20 AM

McCormick Place - W193a



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Using tools to sense and interact with the environment.pdf

STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

After learning about computational thinking, participants will apply the framework to determine where students engage in computational thinking within the activity. Participants will engage in activities where students engineer as part of the investigations. Participants will be able to use a pre-programmed microcontroller (loaned by the presenters) to experience 3 different short investigations each tied to a different phenomenon. 1) Does angle matter? How does the angle of the collector affect how warm it is? Using the microcontroller and lamps participants will collect data to build a model that explains why the tilt of the Earth creates different seasons. 2) Transparent, Translucent, and Opaque. When working in a greenhouse, different materials can be used to cover the greenhouse. Which is the best material for your area? Using the light level sensor on the microcontroller, participants test different materials to recommend their uses when designing a greenhouse. 3) Making an alarm - using the microcontroller accelerometer sensor, participants arm an alarm and see how the accelerometer works in three dimensions. Participants will be provided printed copies of the lesson plans and how to engage students with using the microcontrollers. Note that no knowledge of coding or any equipment brought is necessary to participate in this workshop.

TAKEAWAYS:
Attendees will learn (1) Microcontrollers are small computers that come with several integrated sensors. Their functionality makes them useful for both investigations and engineering projects. Some of the basic functionality of different microcontrollers (2) One definition of computation thinking is how to use computers to solve problems. Computational thinking activities that connect students to everyday phenomena. The development of algorithms or the decomposition of problems into simple steps are just two examples of processes associated with computation thinking. It is a powerful problem-solving technique that is used in the modern world (3) How engineering tasks provide opportunities for student sensemaking

SPEAKERS:
Susan German (Hallsville Middle School: Hallsville, MO), G. Michael Bowen (Mount Saint Vincent University: Halifax, NS)

Let's Get Middle School Students Interested in Climate Change!

Thursday, July 21 • 2:20 PM - 3:20 PM

McCormick Place - W175a


STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

What causes seasons on Earth? How is permafrost affected by climate change? What can we learn from ice cores about climate? These questions are answered through a series of NGSS aligned, hands-on activities. Students design an experiment to test the effect of Earth’s tilt on seasons, explore the effect of climate change on structures built on permafrost, and more! The eesmarts climate change curriculum is composed of adapted lessons surrounding natural cycles that occur on Earth and in our solar system, including the carbon cycle and sunspot activity, how these cycles affect populations, and how humans may affect natural cycles. Activities examine evidence from the past through proxies such as tree rings, cherry tree blossoms, and ice core data. Additional topics include climate and ecosystems, the impact of invasive species, and how to minimize the effect of human activity. The lessons are part of the eesmarts K-12 curriculum, an energy efficiency and clean, renewable energy learning initiative funded by the Connecticut Energy Efficiency Fund. They are written in the 5-E Instructional Model and include presentation Google Slides and handouts. Select digital resources will be provided to participants. The complete eesmarts program is free and available to all Connecticut educators.

TAKEAWAYS:
Participants will explore activities involving natural cycles including the sun cycle, the carbon cycle, and seasons, as well as a variety of proxies and what they can tell us about Earth’s climate past and present.

SPEAKERS:
Kathleen Brooks (CREC: No City, No State), Karin Jakubowski (eesmarts: No City, No State)

Data, Tables, Graphs, Oh My! Strategies to Get All Students Doing & Speaking Science

Thursday, July 21 • 2:20 PM - 3:20 PM

McCormick Place - W176c



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Access to Resource Document
Complete the Google Form to gain access to the Resource Document and slide deck from the workshop.

STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

We are naturally curious, prone to ask why? How? What? Unfortunately, somewhere along the way students lose the trust in their voices to ask questions of and from data. But data are what we use to do science and it permeates all aspects of society today. What should we do? Stop teaching the vocabulary of science and data first, and instead leverage classroom-ready strategies to empower students to lead with their innate curiosity to practice critical 21st century data literacy skills and master the science content. Join us to explore connections between our science content, inquiry-based activities, and data skills. We will experience research-based strategies and freely available resources for integrating phenomenon-based and local data into our science instruction to promote science literacy and student empowerment. We will participate in activities ourselves and reflect on approaches for how to bring these into our classrooms. Participants will leave more empowered to integrate data into their science content in purposeful ways to better help students do and communicate science. Working with and learning science from data fosters critical thinking skills, lifelong interests in science, and facilitates learners’ overall self-identity as a scientist. Let’s set all of our students up for success!

TAKEAWAYS:
Participants will identify how data literacy is a critical aspect of science literacy in the 21st century, how students can do a lot more with data than we often think or presume from their science vocabulary alone, and how to leverage existing strategies to authentically integrate data into 6-12 science instruction to teach their science content and increase literacy simultaneously.

SPEAKERS:
Kristin Hunter-Thomson (Dataspire Education & Evaluation, LLC)

Evolution Game: Demystifying Speciation

Thursday, July 21 • 2:20 PM - 3:20 PM

McCormick Place - W195



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Evolution Game slide show
These slides will be used in the workshop to introduce and explain using the Evolution Game as a teaching tool. The game clarifies how species evolve through mutations, natural selection, and just plain luck. Students "evolve" their creatures, use their artistic abilities to draw mutations, and have fun while learning.

STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

This session will start with an overview of the challenges involved in teaching the theory of evolution, including common student misconceptions. Participants will then spend 30 minutes playing the Evolution Game, developed by the speaker, in which players evolve and sketch the changes to their species. The game is really fun and involves, student inquiry, collaboration, problem solving, and touches on the engineering of species that is inherent in evolution. The session will end with a discussion of concepts learned, a copy of an assessment sheet will be shared, and all participants will leave with an electronic copy of the game.

TAKEAWAYS:
Demystifying how good, bad, and benign mutations can make a species survive, evolve, or become extinct through an interactive, fun board game.

SPEAKERS:
Sarah Faulkner (East Granby Middle School: East Granby, CT)

Local Phenomenon-Based Projects

Friday, July 22 • 8:00 AM - 9:00 AM

McCormick Place - W185d


STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

Learn how to better integrate local phenomena into classroom learning through the use of long-term projects and a competition.

TAKEAWAYS:
Strategies to use student-chosen local phenomena as the basis for long-term projects and participation in a national STEM competition.

SPEAKERS:
Winnie Boyle (NSTA: No City, No State)

Artemis Mission Activities: Landing Humans on the Moon

Saturday, July 23 • 9:20 AM - 10:20 AM

McCormick Place - W184d


STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

Learn about NASA’s Next Gen STEM educator resources and how to join our first online community of practice for STEM educators (CONNECTS).

TAKEAWAYS:
Educators will learn about future opportunities with NASA for student participation while completing a lunar lander design challenge.

SPEAKERS:
Lynn Dotson (NASA Office of STEM Engagement-GoH: Kennedy Space Center, FL)

Programming Simple Tools to Facilitate Science Inquiry Investigations

Saturday, July 23 • 1:00 PM - 2:00 PM

McCormick Place - W184d



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Programming Simple Tools to Facilitate Science Inquiry Investigations.pdf

STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

Participants will learn about the framework for computational thinking and then learn to apply it to science inquiry investigations using Block Coding (used with students in elementary and middle school in many jurisdictions) and how it can be used to improve the conduct of science investigations (and be more like the investigations conducted by scientists).   Participants will apply the computational thinking framework to creating/modifying/using simple programs (either using a free online programming tool OR with a simple, inexpensive microcontroller that will be loaned by the presenters) that can be used in science inquiry investigations either for conducting the investigation (e.g., a random number generator) or for collecting data (e.g., a counter and a timer). Investigations where these can be used will be discussed and demonstrated. The use of the microcontrollers and/or a free online programming tool to develop a simple measurement tool provides participants (and their students) an opportunity to experience a simulated situation a scientist or engineer would face as they use computing tools to develop automated measuring responses.   Finally, as an example of what is known as “physical computing”, participants will learn to build (and will build if time allows) a physical interface (to use with a computer or Chromebook) that allows them to interact with a program they have either written or downloaded.   Participants will be provided printed copies of example lesson plans and instruction sheets on how to engage students with using the Scratch program and the microcontrollers). Note that no knowledge of coding or any equipment is necessary to participate in this workshop. 

TAKEAWAYS:
Attendees will learn how computational thinking (applied to simple block coding examples and simple micro-controllers) can be used in science classrooms to help students conduct better inquiry investigations and better experience “authentic” science practices.

SPEAKERS:
G. Michael Bowen (Mount Saint Vincent University: Halifax, NS), Susan German (Hallsville Middle School: Hallsville, MO)

Facilitating Inquiry for Growth in Science and Engineering Practices: Exploring Surface Heating

Saturday, July 23 • 2:20 PM - 3:20 PM

McCormick Place - W178a



(Only registered attendees may view session materials. Please login with your NSTA account to view.)
Exploring Surface Heating.pdf
UHI Observations.pdf

STRAND: Using Inquiry-Based STEM to Facilitate Learning for ALL

Show Details

Learning through place-based, student-centered, teacher-facilitated STEM inquiry increases student engagement in and ownership of learning and promotes student growth in science and engineering practices, disciplinary core ideas, and crosscutting concepts. Using a unit plan I developed for exploring local microclimates, participants will engage in activities and discussion of techniques for cultivating students as collaborators in the learning process. The unit is designed to encourage growth in asking questions, designing and conducting investigations, collecting data, making sense of data, communicating findings, and identifying local problems and designing solutions to a student-identified problem. Participants will use NASA infrared images of surface temperatures captured during an ISS mission to observe the urban heat island phenomenon. They will explore Google Earth to spark questions about surface heating that can be answered through investigation of the local neighborhood or school campus. Given a list of equipment that students used during the unit, participants will collaboratively design an investigation to collect place-based data. Discussion includes extension activities that facilitate student understanding of surface heating and cooling. Discussion also includes how revision and reflection can be used to monitor individual student growth and promote ownership of learning by students. Emphasis is on facilitation techniques.

TAKEAWAYS:
Learning through place-based, student-centered, teacher-facilitated STEM inquiry increases student engagement in and ownership of learning and promotes student growth in science and engineering practices, disciplinary core ideas, and crosscutting concepts.

SPEAKERS:
Loris Chen (Science Education Consultant: Fair Lawn, NJ)

Back to Top