Forums

Forums / Earth and Space Science / Unit Plans for History of Universe, Galaxy Formation and Star Formation

Earth and Space Science

Unit Plans for History of Universe, Galaxy Formation and Star Formation

Author Post
Diane Vrobel Diane Vrobel 1905 Points

I currently teach in Ohio and under the current science standards need to included History of the Universe, Galaxy Formation and Star Formation. I unfortunately don't have the time to create my own unit plans right now. If you have a unit plan for 10th grade and up (I can water down the lessons) with presentation, worksheet and assessment files, I would be your grateful recipient. If there are links that would help me, please send them. I have attached the Ohio Science Standards and it is listed under Physical Science. Thanks.

Attachments

Diane Vrobel Diane Vrobel 1905 Points

History of the Universe The Big Bang Model is a broadly accepted theory for the origin and evolution of our universe. It postulates that 12 to 14 billion years ago, the portion of the universe seen today was only a few millimeters across (NASA). According to the “big bang” theory, the contents of the known universe expanded explosively into existence from a hot, dense state 13.7 billion years ago (NAEP 2009). After the big bang, the universe expanded quickly (and continues to expand) and then cooled down enough for atoms to form. Gravity pulled the atoms together into gas clouds that eventually became stars, which comprise young galaxies. Foundations for the big bang model can be included to introduce the supporting evidence for the expansion of the known universe (e.g., Hubble’s law and red shift or cosmic microwave background radiation). A discussion of Hubble’s law and red shift is found in the Galaxy formation section, below. Technology provides the basis for many new discoveries related to space and the universe. Visual, radio and x-ray telescopes collect information from across the entire electromagnetic spectrum; computers are used to manage data and complicated computations; space probes send back data and materials from remote parts of the solar system; and accelerators provide subatomic particle energies that simulate conditions in the stars and in the early history of the universe before stars formed. Galaxy formation A galaxy is a group of billions of individual stars, star systems, star clusters, dust and gas bound together by gravity. There are billions of galaxies in the universe, and they are classified by size and shape. The Milky Way is a spiral galaxy. It has more than 100 billion stars and a diameter of more than 100,000 light years. At the center of the Milky Way is a bulge of stars, from which are spiral arms of gas, dust and most of the young stars. The solar system is part of the Milky Way galaxy. Hubble’s law states that galaxies that are farther away have a greater red shift, so the speed at which a galaxy is moving away is proportional to its distance from the Earth. Red shift is a phenomenon due to Doppler shifting, so the shift of light from a galaxy to the red end of the spectrum indicates that the galaxy and the observer are moving farther away from one another. Doppler shifting also is found in the Energy and Waves section of this course. Stars Early in the formation of the universe, stars coalesced out of clouds of hydrogen and helium and clumped together by gravitational attraction into galaxies. When heated to a sufficiently high temperature by gravitational attraction, stars begin nuclear reactions, which convert matter to energy and fuse the lighter elements into heavier ones. These and other fusion processes in stars have led to the formation of all the other elements. (NAEP 2009). All of the elements, except for hydrogen and helium, originated from the nuclear fusion reactions of stars (College Board Standards for College Success, 2009). Stars are classified by their color, size, luminosity and mass. A Hertzprung-Russell diagram must be used to estimate the sizes of stars and predict how stars will evolve. Most stars fall on the main sequence of the H-R diagram, a diagonal band running from the bright hot stars on the upper left to the dim cool stars on the lower right. A star’s mass determines the star’s place on the main sequence and how long it will stay there. Patterns of stellar evolution are based on the mass of the star. Stars begin to collapse as the core energy dissipates. Nuclear reactions outside the core cause expansion of the star, eventually leading to the collapse of the star. Note: Names of stars and naming the evolutionary stage of a star from memory will not be assessed. The emphasis is on the interpretation of data (using diagrams and charts) and the criteria and processes needed to make those determinations. Sorry about being so long.

Post Reply

Forum content is subject to the same rules as NSTA List Serves. Rules and disclaimers